Magma mixing enhanced by bubble segregation

نویسندگان

  • S. Wiesmaier
  • D. Morgavi
  • C. J. Renggli
  • D. Perugini
  • C. P. De Campos
  • K.-U. Hess
  • W. Ertel-Ingrisch
  • Y. Lavallée
  • D. B. Dingwell
چکیده

In order to explore the materials’ complexity induced by bubbles rising through mixing magmas, bubbleadvection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh endmember melt. As a result, complex compositional gradients and therefore diffusion systematics can be expected at the filament–host melt interface, due to the repetitive nature of the process. However, previously magmatic filaments were tacitly assumed to be of single-pulse origin. Consequently, the potential for multi-pulse filaments has to be considered in outcrop analyses. As compositional profiles alone may remain ambiguous for constraining the origin of filaments, and as 3-D visual evidence demonstrates that filaments may have experienced multiple bubbles passages even when featuring standard diffusion gradients, therefore, the calculation of diffusive timescales may be inadequate for constraining timescales in cases where bubbles have played an essential role in magma mixing. Data analysis employing concentration variance relaxation in natural samples can distinguish conventional single-pulse filaments from advection via multiple bubble ascent advection in natural samples, raising the prospect of yet another powerful application of this novel petrological tool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melt segregation mechanism controls on the geochemistry of crustal melts

Crustally-derived granites may be generated in a variety of tectonic settings, but whatever the ultimate causse of heating crustal thickening, crustal extension, enhanced heat flux from the mantle, or magmatic advection by mantle-derived melts crustal melting likely occurs in a dynamic environment. Under these conditions deviatoric stress acting on an anisotropic crustal source region will lead...

متن کامل

Investigation of the role of fractional crystallization, crustal assimilation and magma mixing in turquoise hosted sub-volcanic intrusion rocks in south of Damghan mine, Iran.

Granodiorite and dioritic intrusive rocks (Middle Eocene age) intruded the Lower-Middle Eocene volcanic rocks at the northern parts of the Torud-Chah Shirin volcano-plutonic belt in north east of Iran. This granodiorite is intruded by small rhyolitic dome in the Damghan turquoise-gold mine. According to all data, these intrusive rocks are related to a common source. The primary magma evolved by...

متن کامل

Segregation Behaviour of Particles in Gas Solid Fluidized Beds at Elevated Pressure

A comprehensive mathematical model based on the discrete particle model and computational fluid dynamics was utilized to investigate mixing and segregation of particles in fluidized beds at high pressure. To quantify the extent of mixing in the bed, the Lacey mixing index was used. Simulations were carried out with different mass fractions of small particles at various pressures ranging from 1 ...

متن کامل

Using Magma Mixing/Mingling Evidence for Understanding Magmatic Evolution at Mount Bidkhan Stratovolcano (South-East Iran)

Mount Bidkhan stratovolcano is located in the central Iranian volcanic belt. It is composed of several types of pyroclastic deposits, lava flows and intrusive bodies. Textural and chemical characteristics of plagioclase phenocrysts from the eruptive products volcanic edifice, record complex magma mixing events over the lifetime of the volcano. Evidences such as xenocrystic high Al+Ti clinopyrox...

متن کامل

Segregation patterns of an equidensity TiO2 ternary mixture in a conical fluidized bed: CFD and experimental study

In this study, an Eulerian-Eulerian multi-fluid model (MFM) was used to simulate the segregation pattern of a conical fluidized bed containing ternary mixtures of equidensity TiO2‌ particles. Experimental 'freeze–sieving' method was employed to determine the axial mass fraction profiles of the different-sized particles, and validate the simulation results. The profiles of mass fraction for larg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015